数据治理越来越受到银行、监管机构乃至国家层面的重视。银行已经意识到高效的管理体系、统一的数据标准、良好的数据质量才是数据价值实现的基础。在实践中,国内银行对于数据治理如何开展存在诸多的困惑,数据治理工作的落地也面临着众多的困难与挑战。
一、数据治理实践面临的难点
从《中小银行金融科技发展研究报告(2019)》显示中小银行的数据治理基本处于萌芽期,达91%的中小银行尚未开展有效的数据治理工作。从不同的部门从其在数据管理的角色看,面临以下问题:
1、业务部门:数据治理绝不是“与己无关”的一项工作。作为主要的业务数据输入端,业务及一线部门扮演着重要的数据质量控制角色。
2、信息技术部门:数据治理的工作涉及到信息系统建设的方方面面。例如数据管控平台如何定位,数据管控平台与各源系统、数据加工分析平台之间的关系是什么,什么样的信息系统建设流程是符合数据治理要求规范的。
3、数据治理归口管理部门:数据治理是一项长期的、动态的工作,如何将数据治理的价值和成果显性化、将数据治理工作拆分为不同的模块和任务,逐步的推进和落实,将数据治理从管控式理念模式向服务式理念模式转换。
4、合规和审计部门:如何规范化标准化地开展数据治理评估与审计工作是一个新的课题。从哪些方面进行评估,评估的维度有哪些,评估的标准如何定义,评估的范围如何选择,逐步细化,明确标准。
二、银行数据治理的工作方法
1、体系规划:需要充分结合自身发展战略的要求来制定数据战略,通过搭建完整的数据治理体系框架,整合联动数据管理各项工作,服务业务,实现数据价值。体系化的建设内容可以包括四个层面。
2、顶层设计:有效的组织架构是数据治理成功与否的有力保证,为达到数据战略目标,建立体系化的组织架构、明确职责的分工是非常必要的,很大程度上取决于决策层对于数据治理的决心。
从银行发展的一般趋势来看,在数据相关工作的早期形成了“数据管理工作小组”,作为归口管理的形式,由相关业务部门骨干和IT人员组成,按需召集会议。无论出于自身发展所需还是应对外部监管压力,其效力和效率已均不能满足数据管理的急切需要。因此,独立统一的“归口管理部门”应运而生,作为全行数据治理的牵头部门,明确并落实其职责,要求其牵头实施数据治理体系、协调落实运行、组织推动工作。
3、数据治理工作:银行可以从业务和技术两个不同的视角分头开展梳理盘点工作。业务视角是自上而下的演绎,包括从业务价值链,数据应用场景进行业务说数据的梳理分析。技术视角则是自下而上归纳,以银行现有信息系统为基础,整理相关信息表和信息项的情况。最终两者整合,形成银行数据治理第一阶段工作成果《数据资产清单目录》。
4、数据资产清单:最重要的步骤是数据认责(确权),可根据数据录入部门、数据需求提出部门、数据标准管理部门、信息系统业务主管部门等不同的方式进行依次认责,保障所有的数据都可以认责到部门。
5、数据管理工具:数据管理工作内容覆盖全行的各条线,无论是新产品建设,信息系统改造,都涉及到相关的数据管理工作。数据管理工具会有以下的三种建设方式:
1、整合数据门户建设,统一数据入口。该方式整合数据应用,数据分析工具入口,将数据管理的内容2作为服务提供给业务部门,同时在应用中嵌入管理的要求。
2、数据流程管控,强调绩效考核。该方式关注流程落地,关注绩效数据,通过报表平台化的方式管理标准落标,质量水平,问题整改情况等。
3、构建社区沙龙,建设企业数据文化。基于数据资产和数据管理的各项成果,采用全行数据社区化管理,引入社交的方式,用户可对内容进行点赞,点评和讨论。
总之,数据治理是一项长期动态的过程,是银行管理者意志贯彻的工程,银行不应抱有“毕其功于一役”的想法与态度,而应从战略指导、组织架构、管理流程等从上到下的思想转变,合理规划,稳扎稳打,同时也不能畏难而止步不前。