数据中台数据中台
申请试用
新闻动态
了解袋鼠云最新动态
新闻动态>大数据可视化是什么>
大数据可视化是什么
20211231|文章来源:-

数据可视化要根据数据的特性,如时间信息和空间信息等,找到合适的可视化方式,将数据直观地展现出来,以帮助人们理解数据,同时找出包含在海量数据中的规律或者信息。数据可视化是大数据生命周期管理的最后一步,也是最重要的一步。

二、大数据可视化的基本概念

1、数据空间。由n维属性、m个元素共同组成的数据集构成的多维信息空间。

2、数据开发。利用一定的工具及算法对数据进行定量推演及计算。

3、数据分析。对多维数据进行切片、块、旋转等动作剖析数据,从而可以多角度多侧面的观察数据。

4、 数据可视化。将大型集中的数据通过图形图像方式表示,并利用数据分析和开发工具发现其中未知信息。

三、大数据可视化的实施

从技术上来说,大数据可视化的实施步骤主要有四项:需求分析,建设数据仓库/数据集市模型,数据抽取、清洗、转换、加载(ETL),建立可视化分析场景。

1、需求分析

需求分析是大数据可视化项目开展的前提,要描述项目背景与目的、业务目标、业务范围、业务需求和功能需求等内容,明确实施单位对可视化的期望和需求。包括需要分析的主题、各主题可能查看的角度、需要发现企业各方面的规律、用户的需求等内容。

2、建设数据仓库/数据集市的模型

数据仓库/数据集市的模型是在需求分析的基础上建立起来的。数据仓库/数据集市建模除了数据库的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。维度建模的关键在于明确下面四个问题:

哪些维度对主题分析有用?

如何使用现有数据生成维表?

用什么指标来“度量”主题?

如何使用现有数据生成事实表?

3、数据抽取、清洗、转换、加载(ETL)

数据抽取是指将数据仓库/集市需要的数据从各个业务系统中抽离出来,因为每个业务系统的数据质量不同,所以要对每个数据源建立不同的抽取程序,每个数据抽取流程都需要使用接口将元数据传送到清洗和转换阶段。

数据转换是整个ETL过程的核心部分,主要是对原数据进行计算和放大。数据加载是按照数据仓库/集市模型中各个实体之间的关系将数据加载到目标表中。

4、建立可视化场景

建立可视化场景是对数据仓库/集市中的数据进行分析处理的成果,用户能够借此从多个角度查看企业/单位的运营状况,按照不同的主题和方式探查企业/单位业务内容的核心数据,从而作出更精准的预测和判断。

 

四、大数据可视化的发展趋势

大数据时代,大规模、高纬度、非结构化数据层出不穷,要将这样的数据以可视化形式完美的展示出来, 传统的显示技术已很难满足这样的需求。而高分高清大屏幕拼接可视化技术正是为解决这一问题而发展起来的, 它具有超大画面、纯真彩色、高亮度、高分辨率等显示优势, 结合数据实时渲染技术、GIS空间数据可视化技术,实现数据实时图形可视化、场景化以及实时交互,让使用者更加方便地进行数据的理解和空间知识的呈现,可应用于指挥监控、视景仿真及三维交互等众多领域。

 

免费试用袋鼠云数字化基础软件,开启企业数字化增长之旅
免费试用袋鼠云数字化基础软件,开启企业数字化增长之旅
袋鼠云立体IP
在线咨询
在线咨询
电话咨询
电话咨询
微信社群
微信社群
资料下载
资料下载
返回顶部
返回顶部