大数据行业经历了十余年的快速发展,正式进入数据智能化阶段,数据驱动决策,驱动业务发展的企业新需求,实现数据价值最大化。
数据的核心价值在于从经验决策迈向数据决策,快人半步地认知世界。
数据智能对企业的价值
我们在深耕数据智能应用之上,也为零售领域各行业客户数智化转型赋能,助推企业降本增效。
袋鼠云通过对李宁门店商品销售和IOT数据的分析,找出适合门店及店群销售的商品,打造统一融合的智慧门店方案,让大数据来思考如何进行门店组货,智能组货算法平均能为单店提供5%-10%增长率。
如何解决数据问题?
我们所有的企业在数字化转型走到今天,发现业务问题背后往往可能隐藏的为数众多的数据问题,如数据不通、数据不可用、数据变现等问题。
那么,如何解决这些数据问题?
从数据用起来的角度,根据业务场景,看数据是否已被收集、治理,是否已变成数据资产价值,所以叫「盘理管用」。但从我们思考的维度则相反,我们要关注怎么去盘、怎么去理、怎么去管,以及最终怎么去用。核心目的是让数据发挥价值。
数据资产治理数据中台领域的数据治理六要素:标准定义、数据模型设计、数据同步、数据清洗、数据建模、数据规范设计。
数据资产应用全域数据:数据资产不仅仅是企业内部的数据资产,规划智能模型需要另外可使用的外部数据,包括交通、POI、商圈客流、天气、楼盘等,按需提供。
业务开放:开放数据API,赋能业务使用方。
经营决策:通过经营决策报表实时反映企业运行状态,助力企业管理者高效决策。
数据智能:是数据应用的最前沿,最终探索数据价值就是构建数据智能应用模型,采用深度学习等算法技术来实现数据智能应用模型,根据业务运行情况自动自我迭代。
如何最大化释放企业数据价值?
以上只是解决了数据平台层的各类问题,在数据应用层面,我们还需清楚如何释放数据背后的价值。
大数据不等于数据分析,也不等于数据价值。早年业界流传着两种说法,第一种是数据流派,不看业务而是通过海量的数据发现数据背后潜在的规则;另一种是业务流派,通过业务痛点看所需的数据,再通过代码得以实现。两大流派各有特点,但从发现数据价值的角度看,数据和分析的价值还需进一步结合业务场景最终实现数据价值。