博客 数据仓库(一):基础架构

数据仓库(一):基础架构

   数栈君   发表于 2023-03-15 17:54  477  0

01. 架构演进
离线数据仓库到实时数据仓库,从lambda架构到kappa架构、再到混合架构。
http://dtstack-static.oss-cn-hangzhou.aliyuncs.com/2021bbs/files_user1/article/226fb53c9f52dc7056c600fc49012f10..jpeg


02. 逻辑分层
数仓分层,一般按ods->dw->dm整体架构。不同的企业,不同的业务场景,有衍生出不同的分层架构模式。例如经典四层架构:ods->dwd->dws-ads等;
http://dtstack-static.oss-cn-hangzhou.aliyuncs.com/2021bbs/files_user1/article/22c57dcb502a22293eb4866cc74745e0..png

技术选型,传统数仓一般以Oracle、greenplum、teradata 等,互联网数仓一般以Hadoop生态圈为主,离线以Hive为核心,准实时以spark为核心,实时以flink为核心构建。

03. 数据调研
技术选型,传统数仓一般以Oracle、greenplum、teradata 等,互联网数仓一般以Hadoop生态圈为主,离线以Hive为核心,准实时以spark为核心,实时以flink为核心构建。
http://dtstack-static.oss-cn-hangzhou.aliyuncs.com/2021bbs/files_user1/article/797b68f73137e0a7b9e63bd664aee99d..png

需求调研,现有BI报表需求,统计需求,用户画像,推荐系统等数据应用。

数据库调研,了解数据库表数据结构、数据形态,全局把握业务流程数据流向,做到真正业务流程和数据结构结合。

04. 主题域划分
业务高度抽象,可先确定企业业务bu模块,然后可根据概念模型(cdm)进行一级主题划分,确定一致性维度和事实流程,构建总线矩阵。

按照kimball大师经典建模四步骤:选择业务过程->声明粒度->确定维度->确定事实 进行维度建模。


05. 数仓规范
构建企业级数据仓库,必不可少的就是制定数仓规范。包括 命名规范,流程规范,设计规范,开发规范 等。无规矩不成方圆,建设数仓也是这样。

开发规范 示例:


06. 数据治理
大数据时代必不可少的一个重要环节,可从数据质量、元数据管理、数据安全、数据生命周期等方面开展实施。数据治理是一个企业安身立命的根本。

数据质量,必须保证完整性、准确性、一致性、时效性。每一个任务都应该配置数据质量监控,严禁任务裸奔。可建设统一数据质量告警中心从以下四个方面进行监控、预警和优化任务。

元数据管理,关于数据的数据。可分为技术元数据和业务元数据。对于数仓开发和维护,模型血缘关系尤为重要。

数据安全,可包含以下五方面的内容,即数据的保密性、真实性、完整性、未授权拷贝和所寄生系统的安全性。

07. 数仓理念
从80年代到现在,数据仓库流派之争已趋于稳缓,比较经典的就是数仓大师Kimball的维度建模、数仓之父Inmon的范式(E-R)建模,另外还有Data Vault建模、Anchor模型等。

内容来源于网络,如侵删。

近日,袋鼠云重磅发布《数据治理行业实践白皮书》,白皮书基于袋鼠云在数据治理领域的8年深厚积累与实践服务经验,从专业视角逐步剖析数据治理难题,阐述数据治理的概念内涵、目标价值、实施路线、保障体系与平台工具,并借助行业实践案例解析,为广大读者提供一种数据治理新思路。

扫码下载《数据治理行业实践白皮书》,下载地址:https://fs80.cn/4w2atuhttp://dtstack-static.oss-cn-hangzhou.aliyuncs.com/2021bbs/files_user1/article/40b007d5c485f01a192f094ea2ecf3f1..png




想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:
https://www.dtstack.com/?src=bbs

同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术群」,交流最新开源技术信息,群号码:30537511,项目地址:
https://github.com/DTStack


0条评论
社区公告
  • 大数据领域最专业的产品&技术交流社区,专注于探讨与分享大数据领域有趣又火热的信息,专业又专注的数据人园地

最新活动更多
微信扫码获取数字化转型资料
钉钉扫码加入技术交流群