140页深度干货,囊括15个典型成功案例,覆盖金融、集团、政务、制造、港口5大行业,全书从方法论到实践全面解码数据治理,开辟数据治理新范式,丰富内容可免费获取!
免费获取链接:https://fs80.cn/4w2atu

1、数据治理历史
探究“数据治理”的历史可以发展分为三个阶段。
第一阶段早期探索,早在1988年由麻省理工学院的两位教授启动了全面数据质量管理计划(TDQM),可以认为是数据治理最初的雏形,同年,DAMA(国际数据管理组织协会)成立。时间一直走到2002年,数据治理概念首次出现在学术界,美国两位学者发表题为《数据仓库治理》的研究探讨了Blue Cross和Blue Shield of North Carolina两家公司的最佳实践,由此拉开了“数据治理”在企业管理中的大幕。
第二阶段理论研究,在美国学者发表《数据仓库治理》的第二年,2003年DGI(国际数据治理研究所)成立,研究数据治理理论框架,与ISO国际标准化组织对数据管理与数据治理进行定义。直到2009年,DAMA国际发布DMBOK《数据管理知识体系指南》[15](以下简称《DAMA指南》),至此数据治理的理论框架基本固定。2020年DAMA国际发布DMBOK《数据管理知识体系指南原书第二版》[16](以下简称《DAMA指南第二版》)。
第三阶段广泛接受与应用,伴随着数据仓库的建设,主数据管理与BI的实施,国内也逐步开始接受并利用数据治理的概念进行推广实践。我国数据治理之路在DMBOK基础上不断延伸和扩展,里程碑事件为在2015年提出了《数据治理白皮书》[14]国际标准研究报告。
2018年6月7日,国家市场监督管理总局和国家标准化管理委员会发布《中华人民共和国国家标准公告(2018年第9号)》,批准《信息技术服务治理第5部分:数据治理规范》[18](以下简称《数据治理规范》)国家标准发布实施,标准号为GB/T 34960.5-2018,实施日期为2019年1月1日。《数据治理规范》是我国信息技术服务标准(ITSS)体系中的“服务管控”领域标准,属于《信息技术服务治理》的第5部分。
金融等行业也在实践的过程中形成了自己的治理体系,比如银行在2018年发布了《银行业金融机构数据治理指引》[19](以下简称《银行数据治理指引》),标志着数据治理在我国银行金融机构中全面实践时代的到来,华为2020年出了本书《华为数据之道》,可以看到数据治理在企业中也开始发挥出越来越重要的作用。
2、数据治理定义
百度百科:
数据治理(Data Governance)是组织中涉及数据使用的一整套管理行为。由企业数据治理部门发起并推行,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的一系列政策和流程。
国际数据治理研究所(DGI):
数据治理是一个通过一系列信息相关的过程来实现决策权和职责分工的系统,这些过程按照达成共识的模型来执行,该模型描述了谁(Who)能根据什么信息,在什么时间(When)和情况(Where)下,用什么方法(How),采取什么行动(What)。
DAMA指南:
数据治理是对数据资产管理行使权力和控制的活动集合(规划、监控和执行)。数据治理职能指导其他数据管理职能如何执行。数据治理是在高层次上执行数据管理制度。数据治理是通过连续性的计划和持续改进的过程来完成的。除了持续性的改进,数据治理的另外一个标志就是共同决策。有效的数据管理工作需要跨组织边界和系统边界。
银行数据治理指引:
数据治理是指通过建立组织架构,明确董事会、高级管理层、部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值的动态过程。