博客 docker中使用GPU

docker中使用GPU

   数栈君   发表于 2023-08-25 09:50  2066  0

注意:

本机想要启用gpu加速计算,需要由一张多余的nVidia显卡。需要提前禁用nouveau:lsmod | grep nouveau没有输出即禁用了

需要安装1、显卡驱动、2、cuda库(安装cuda会自动安装显卡驱动)3、cudnn(深度神经网络的GPU加速库,需要神经网络则安否则可以不安)

安装完成后,可以在本机运行nvidia-smi查看GPU设备的状态。

Docker使用gpu:

nvidia-docker2.0对nvidia-docker1.0进行了很大的优化,不用再映射宿主机GPU驱动了,直接把宿主机的GPU运行时映射到容器即可,容器内无需安装gpu驱动和cuda了。

一、nvidia-docker方式

为了使docker image能很便利的使用Nvidia GPU,从而产生了nvidia-docker,由它来制作nvidia driver的image。nvidia-docker是一个可以使用GPU的docker,nvidia-docker是在docker上做了一层封装,通过nvidia-docker-plugin,然后调用到docker。

需要安装:1、docker 2、显卡驱动(nvidia driver) 和cuda(安装cuda时会自动安装显卡驱动) 。 3、nvidia-docker(nvidia-docker2是对nvidia-docker的升级)

nvidia-docker run --rm nvidia/cuda:10.0-devel

docker开的容器中要想支持gpu,也必须安装cuda(安cuda时会自动安驱动)

1、可以直接使用tensorflow、pytorch等官方提供的gpu镜像。

2、如果想自己定制,可以基于nvidia/cuda镜像,进行配置(不要从头自己配置)


二、Docker19.03之后,内置gpu支持

增加了对--gpus选项的支持,我们在docker里面想读取nvidia显卡再也不需要额外的安装nvidia-docker2了。需要提前禁用nouveau:lsmod | grep nouveau没有输出即禁用了

需要安装:1.安装nvidia驱动、cuda 2、安装nvidia-container-runtime 3、安装docker-19.03

1、安装驱动和cuda:

下载对应版本的cuda:CUDA Toolkit 12.1 Update 1 Downloads | NVIDIA Developer
比如我下载的为Centos7版本的RPM包,下载后直接安装。安装cuda的时候会自动安装nvidia驱动,控制台信息:

Installing the NVIDIA display driver...

Installing the CUDA Toolkit in /usr/local/cuda-9.1 ...

ps:也可以先手动安装驱动,然后再通过.run文件安装cuda(可以选择不安装nvidia驱动)

安装cuda时报错:错误:软件包xxx需要:opencl-filesystem、ocl-icd

解决:安装epel数据源即可yum install epel-release –y。

2、安装nvidia-container-runtime:

distribution=$(. /etc/os-release;echo $ID$VERSION_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo

sudo yum install -y nvidia-container-toolkit nvidia-container-runtime

3、运行容器时,添加--gpu参数启用gpu支持。

# 使用所有GPU

$ docker run --gpus all nvidia/cuda:9.0-base nvidia-smi

# 使用两个GPU

$ docker run --gpus 2 nvidia/cuda:9.0-base nvidia-smi

# 指定GPU运行

$ docker run --gpus '"device=1,2"' nvidia/cuda:9.0-base nvidia-smi

$ docker run --gpus '"device=UUID-ABCDEF,1"' nvidia/cuda:9.0-base nvidia-smi

docker exec -it centos #进入容器

nvidia-smi #容器内查看gpu使用情况

测试:docker pull ufoym/deepo:keras-py36-cu80 #拉取支持gpu的keras & tensorflow环境

docker run --gpus all --rm -it ufoym/deepo:keras-py36-cu80 #启动后,进入容器。

进入python环境 (docker run --gpus all --rm -it ufoym/deepo)

python

输入代码

import tensorflow as tf
a = tf.constant('hello world')
sess = tf.Session()

sess.run(a)
sess.close()
报错:docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].

解决:确保安装了nvidia-container-runtime,然后sudo systemctl restart docker即可。



  免责申明:


本文系转载,版权归原作者所有,如若侵权请联系我们进行删除!

《数据治理行业实践白皮书》下载地址:https://fs80.cn/4w2atu

《数栈V6.0产品白皮书》下载地址:
https://fs80.cn/cw0iw1

想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:
https://www.dtstack.com/?src=bbs

同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术群」,交流最新开源技术信息,群号码:30537511,项目地址:
https://github.com/DTStack

0条评论
社区公告
  • 大数据领域最专业的产品&技术交流社区,专注于探讨与分享大数据领域有趣又火热的信息,专业又专注的数据人园地

最新活动更多
微信扫码获取数字化转型资料
钉钉扫码加入技术交流群