一、Ray 的概述
1.1 Ray 的定义与特点
Ray 是开源分布式机器学习框架,具备高度可扩展性、灵活任务调度、多语言支持及易集成等特点。能轻松处理大规模数据集和复杂机器学习任务,根据任务优先级和资源需求动态调度,支持 Python、 Java 、C++ 等语言,可与 TensorFlow、PyTorch 等流行框架集成。
1.2 Ray 的架构与工作原理
由全局控制节点、本地控制节点和任务执行器组成。将任务分解为子任务,分配到不同节点并行执行,通过高效任务调度和资源管理,充分利用集群计算资源,提高任务执行效率。
以下是简单的 Python 代码示例展示启动远程函数:
import ray
ray.init()
@ray.remote
def add(a, b):
return a + b
result = ray.get(add.remote(1, 2))
print(result)
二、Ray 的优势
2.1 高效分布式计算
采用分布式架构,将大规模机器学习任务分解为子任务并行执行,提高计算效率,缩短训练时间。如处理大规模图像数据集时,可分割图像数据并行处理。
代码示例:
import ray
import numpy as np
from PIL import Image
ray.init()
@ray.remote
def process_image(image_path):
img = Image.open(image_path)
# 图像处理操作
return processed_image
image_paths = ['image1.jpg', 'image2.jpg', 'image3.jpg',...]
results = ray.get([process_image.remote(path) for path in image_paths])
2.2 灵活任务调度
任务调度机制灵活,可根据优先级和资源需求动态调度,确保高优先级任务及时执行,充分利用集群资源。如模型训练时可暂停当前任务处理紧急任务。
模拟任务调度代码示例:
import ray
import time
ray.init()
@ray.remote
def long_running_task():
time.sleep(10)
return "Long task completed"
@ray.remote
def short_running_task():
time.sleep(2)
return "Short task completed"
long_task_ref = long_running_task.remote()
short_task_ref = short_running_task.remote()
@ray.remote
def urgent_task():
time.sleep(1)
return "Urgent task completed"
urgent_task_ref = urgent_task.remote()
print(ray.get(urgent_task_ref))
print(ray.get(short_task_ref))
print(ray.get(long_task_ref))
2.3 易于集成与扩展
可与 TensorFlow、PyTorch等集成,方便开发者在现有项目中使用,提高开发效率。同时提供丰富扩展接口,可定制任务调度算法和资源管理策略。
代码示例:
import ray
import tensorflow as tf
ray.init()
@ray.remote
def train_tensorflow_model():
# 构建 TensorFlow 模型
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 加载数据并训练
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 784) / 255.0
x_test = x_test.reshape(-1, 784) / 255.0
model.fit(x_train, y_train, epochs=5, batch_size=32)
return model.evaluate(x_test, y_test)
result = ray.get(train_tensorflow_model.remote())
print(result)
三、Ray 对人工智能和大数据领域的具体影响
3.1 在人工智能领域的影响
加速模型训练:分布式计算能力缩短大规模深度学习模型训练时间。如某人工智能团队采用 Ray 后,训练时间从数周缩短至几天。利用任务调度机制动态分配子任务,通过参数服务器功能同步更新模型参数。
代码示例:
import ray
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical
ray.init()
def train_model():
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
model = ResNet50(weights=None, input_shape=(32, 32, 3), classes=10)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=10, validation_data=(x_test, y_test))
return model.evaluate(x_test, y_test)
@ray.remote
def distributed_train_model():
return train_model()
results = ray.get([distributed_train_model.remote() for _ in range(4)])
print(results)
提高模型性能:并行处理和高效任务调度充分利用计算资源,训练更复杂模型,提高准确性。如自然语言处理公司采用 Ray 后翻译准确性显著提高。利用分布式数据并行训练,结合自动混合精度训练功能。
代码示例:
import ray
import torch
from torch.utils.data import DataLoader
from transformers import BertTokenizer, BertForSequenceClassification
ray.init()
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
def train_epoch(model, dataloader, optimizer, device):
model.train()
total_loss = 0
for batch in dataloader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
optimizer.zero_grad()
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
total_loss += loss.item()
loss.backward()
optimizer.step()
return total_loss / len(dataloader)
def evaluate_model(model, dataloader, device):
model.eval()
total_loss = 0
correct_predictions = 0
total_predictions = 0
with torch.no_grad():
for batch in dataloader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
total_loss += loss.item()
logits = outputs.logits
predictions = torch.argmax(logits, dim=1)
correct_predictions += (predictions == labels).sum().item()
total_predictions += len(labels)
return total_loss / len(dataloader), correct_predictions / total_predictions
@ray.remote
def train_model_on_node(dataset):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
train_dataloader = DataLoader(dataset['train'], batch_size=8, shuffle=True)
eval_dataloader = DataLoader(dataset['val'], batch_size=8)
for epoch in range(3):
train_loss = train_epoch(model, train_dataloader, optimizer, device)
eval_loss, accuracy = evaluate_model(model, eval_dataloader, device)
print(f'Epoch {epoch}: Train Loss={train_loss}, Eval Loss={eval_loss}, Accuracy={accuracy}')
return model.state_dict()
def distributed_train_nlp_model(dataset):
model_refs = [train_model_on_node.remote(dataset) for _ in range(4)]
state_dicts = ray.get(model_refs)
for param in model.parameters():
param.data = torch.zeros_like(param.data)
for state_dict in state_dicts:
for name, param in model.named_parameters():
param.data += state_dict[name] / len(state_dicts)
return model
促进人工智能创新:灵活性和易集成性方便开发者尝试新算法和模型架构,如科研团队利用 Ray 搭建分布式强化学习实验平台,开发高智能机器人控制算法。利用可扩展性集成传感器和执行器,通过分布式训练缩短训练时间。
代码示例:
import ray
import gym
import numpy as np
from ray.rllib.agents.ppo import PPOTrainer, DEFAULT_CONFIG
ray.init()
env = gym.make('CartPole-v1')
def train_ppo():
config = DEFAULT_CONFIG.copy()
config['num_workers'] = 4
trainer = PPOTrainer(config, env)
for _ in range(1000):
trainer.train()
return trainer
@ray.remote
def distributed_train_ppo():
return train_ppo()
trainer_refs = [distributed_train_ppo.remote() for _ in range(4)]
trainers = ray.get(trainer_refs)
best_trainer = max(trainers, key=lambda trainer: trainer.evaluate()['episode_reward_mean'])
print(best_trainer.evaluate())
3.2 在大数据领域的影响
高效处理大规模数据:大数据时代,Ray 的分布式计算能力处理大规模数据集,为大数据分析提供工具。如电商企业利用 Ray 并行处理用户交易数据,发现购买行为模式和潜在需求。使用分布式数据处理框架分割数据,结合任务调度机制动态分配任务,借助 Pandas on Ray 、Dask on Ray 提高效率和准确性。
代码示例:
import ray
import dask.dataframe as dd
ray.init()
def process_large_data():
df = dd.read_csv('large_dataset.csv')
# 数据处理操作
return df.compute()
@ray.remote
def distributed_process_large_data():
return process_large_data()
results = ray.get([distributed_process_large_data.remote() for _ in range(4)])
print(results)
四、Ray 的应用场景
4.1 大规模机器学习
适合大规模图像分类、自然语言处理等任务。分割数据并行处理,根据任务优先级调度,提高训练效率。
代码示例:
import ray
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical
ray.init()
def preprocess_data():
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
return x_train, y_train, x_test, y_test
def train_model_on_node(x_train, y_train):
model = ResNet50(weights=None, input_shape=(32, 32, 3), classes=10)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=5)
return model
def evaluate_model(model, x_test, y_test):
loss, accuracy = model.evaluate(x_test, y_test)
return loss, accuracy
@ray.remote
def distributed_train_and_evaluate(x_train_chunk, y_train_chunk):
model = train_model_on_node(x_train_chunk, y_train_chunk)
_, accuracy = evaluate_model(model, x_test, y_test)
return accuracy
x_train, y_train, x_test, y_test = preprocess_data()
chunk_size = len(x_train) // 4
x_train_chunks = [x_train[i:i + chunk_size] for i in range(0, len(x_train), chunk_size)]
y_train_chunks = [y_train[i:i + chunk_size] for i in range(0, len(y_train), chunk_size)]
accuracy_refs = [distributed_train_and_evaluate.remote(x_chunk, y_chunk) for x_chunk, y_chunk in zip(x_train_chunks, y_train_chunks)]
accuracies = ray.get(accuracy_refs)
average_accuracy = sum(accuracies) / len(accuracies)
print(f"Average accuracy across nodes: {average_accuracy}")
4.2 强化学习
用于游戏 AI、机器人控制等任务,并行训练提高效率。
import ray
import gym
import numpy as np
from ray.rllib.agents.ppo import PPOTrainer, DEFAULT_CONFIG
ray.init()
env = gym.make('CartPole-v1')
def train_ppo():
config = DEFAULT_CONFIG.copy()
config['num_workers'] = 4
trainer = PPOTrainer(config, env)
for _ in range(1000):
trainer.train()
return trainer
@ray.remote
def distributed_train_ppo():
return train_ppo()
trainer_refs = [distributed_train_ppo.remote() for _ in range(4)]
trainers = ray.get(trainer_refs)
best_trainer = max(trainers, key=lambda trainer: trainer.evaluate()['episode_reward_mean'])
print(best_trainer.evaluate())
4.3 分布式数据分析
可进行数据挖掘、统计分析等任务,分割数据并行分析,根据任务优先级调度。
import ray
import dask.dataframe as dd
import pandas as pd
ray.init()
def load_and_process_data():
df = pd.read_csv('large_dataset.csv')
# 数据处理操作
return df
def analyze_data(df):
# 数据分析操作
return analysis_result
@ray.remote
def distributed_load_and_analyze():
df = load_and_process_data()
result = analyze_data(df)
return result
results = ray.get([distributed_load_and_analyze.remote() for _ in range(4)])
print(results)
五、Ray 的案例分析
5.1 某科技公司大规模图像分类项目
利用 Ray 并行处理图像数据,缩短训练时间,节省计算资源。通过分布式数据并行训练、自动混合精度训练和任务调度机制提高效率。
代码示例:
import ray
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical
ray.init()
def preprocess_data():
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
return x_train, y_train, x_test, y_test
def train_model_on_node(x_train, y_train):
model = ResNet50(weights=None, input_shape=(32, 32, 3), classes=10)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=5)
return model
def evaluate_model(model, x_test, y_test):
loss, accuracy = model.evaluate(x_test, y_test)
return loss, accuracy
@ray.remote
def distributed_train_and_evaluate(x_train_chunk, y_train_chunk):
model = train_model_on_node(x_train_chunk, y_train_chunk)
_, accuracy = evaluate_model(model, x_test, y_test)
return accuracy
x_train, y_train, x_test, y_test = preprocess_data()
chunk_size = len(x_train) // 4
x_train_chunks = [x_train[i:i + chunk_size] for i in range(0, len(x_train), chunk_size)]
y_train_chunks = [y_train[i:i + chunk_size] for i in range(0, len(y_train), chunk_size)]
accuracy_refs = [distributed_train_and_evaluate.remote(x_chunk, y_chunk) for x_chunk, y_chunk in zip(x_train_chunks, y_train_chunks)]
accuracies = ray.get(accuracy_refs)
average_accuracy = sum(accuracies) / len(accuracies)
print(f"Average accuracy across nodes: {average_accuracy}")
5.2 某游戏公司游戏 AI 训练项目
采用 Ray 并行训练游戏 AI,提高性能。利用分布式强化学习框架、任务调度机制和可视化工具优化训练。
代码示例:
import ray
import gym
import numpy as np
from ray.rllib.agents.ppo import PPOTrainer, DEFAULT_CONFIG
ray.init()
env = gym.make('CustomGameEnvironment')
def train_game_ai():
config = DEFAULT_CONFIG.copy()
config['num_workers'] = 4
trainer = PPOTrainer(config, env)
for _ in range(1000):
trainer.train()
return trainer
@ray.remote
def distributed_train_game_ai():
return train_game_ai()
trainer_refs = [distributed_train_game_ai.remote() for _ in range(4)]
trainers = ray.get(trainer_refs)
best_trainer = max(trainers, key=lambda trainer: trainer.evaluate()['episode_reward_mean'])
print(best_trainer.evaluate())
六、Ray 的未来发展趋势
6.1 与其他技术融合
未来 Ray 将与深度学习、强化学习、区块链等技术融合,拓展应用场景和发展机遇。例如与深度学习融合实现高效模型训练,与强化学习融合实现智能决策,与区块链融合实现安全数据共享和计算。
6.2 更加智能化任务调度
随着人工智能技术发展,Ray 的任务调度机制将更智能化。采用先进机器学习算法和优化算法,如强化学习算法学习任务优先级和资源需求,遗传算法、模拟退火算法优化任务分配和执行,提高计算效率。
6.3 拓展应用领域
Ray 将在更多领域得到应用,如医疗、金融、交通等。在医疗领域可用于医学影像分析、疾病预测;金融领域用于风险评估、投资决策;交通领域用于交通流量预测、智能交通控制。
Ray 作为崛起的分布式机器学习框架,以高效分布式计算、灵活任务调度和易集成扩展等优势,在大规模机器学习、强化学习和分布式数据分析等领域广泛应用。对人工智能和大数据领域产生深远影响,加速模型训练,高效处理数据,促进创新。未来,Ray 将与更多技术融合,实现智能化调度,拓展应用场景,成为推动人工智能和大数据发展的重要力量。
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/atgfg/article/details/143095291
免责申明:
本文系转载,版权归原作者所有,如若侵权请联系我们进行删除!
《数据治理行业实践白皮书》下载地址:https://fs80.cn/4w2atu
《数栈V6.0产品白皮书》下载地址:https://fs80.cn/cw0iw1
想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=bbs
同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术群」,交流最新开源技术信息,群号码:30537511,项目地址:https://github.com/DTStack