博客 数据资产入表全流程(3)

数据资产入表全流程(3)

   数栈君   发表于 2024-07-09 16:18  372  0

3. 数据资产分类与计量

在完成数据资产的识别和评估后,下一个关键步骤是对数据资产进行分类和计量。这个过程旨在建立一个系统化的框架,使得不同类型的数据资产能够得到恰当的管理和价值衡量。

3.1 建立分类体系

建立一个科学、合理的数据资产分类体系是实现有效管理的基础。良好的分类体系可以帮助企业更好地组织和利用数据资产,也为后续的计量工作提供依据。建立数据资产分类体系的步骤如下:

1. 确定分类维度:常见的分类维度包括数据来源(如内部生成、外部获取)、数据类型(如结构化、非结构化)、业务领域(如财务数据、客户数据、产品数据)、数据敏感度(如公开数据、内部数据、机密数据)等。企业可以根据自身特点选择合适的分类维度。

2. 制定分类标准:对于每个分类维度,需要制定清晰的分类标准。例如,对于数据敏感度,可以定义不同级别的标准,如"公开级"、"内部级"、"保密级"等,并明确每个级别的判断标准。

3. 建立分类层级:在每个分类维度下建立适当的层级结构。例如,业务领域可以分为一级类目(如销售、生产、人力资源)和二级类目(如销售预测数据、生产计划数据、员工绩效数据)。

4. 制定分类规则:明确如何判断一个数据资产属于哪个类别。这可能涉及到一些决策树或判断矩阵的设计。

5. 进行试点分类:选取一部分典型的数据资产进行试点分类,检验分类体系的可操作性和有效性。

6. 修订和完善:根据试点结果,对分类体系进行必要的调整和完善。

7. 全面实施:在全企业范围内推广实施分类体系,对所有已识别的数据资产进行分类。

8. 建立更新机制:随着业务的发展和数据资产的变化,分类体系也需要定期审视和更新。

3.2 选择适当的计量单位

为了能够对数据资产进行量化管理,需要为不同类型的数据资产选择适当的计量单位。计量单位的选择应该能够合理反映数据资产的特性和价值。常见的计量单位包括:

  • 数量单位:如数据条数、字节大小等。适用于衡量数据的规模。
  • 时间单位:如数据的年限、更新频率等。适用于衡量数据的时效性。
  • 质量指标:如准确率、完整率等。适用于衡量数据的质量水平。
  • 使用指标:如访问次数、使用部门数等。适用于衡量数据的使用情况。
  • 货币单位:如估算的市场价值、产生的经济效益等。适用于衡量数据的经济价值。

计量单位的步骤如下

1. 分析数据特性:根据数据资产的类型和特点,分析哪些方面需要进行计量。

2. 确定关键维度:选择能够最好地反映数据资产价值和重要性的计量维度。这可能需要考虑多个维度的组合。

3. 选择具体单位:对于每个计量维度,选择适当的计量单位。例如,对于客户数据,可以选择"活跃客户数"作为数量单位,"客户生命周期价值"作为价值单位。

4. 制定计量标准:明确每个计量单位的具体定义和计算方法。例如,如何定义"活跃客户",如何计算"客户生命周期价值"。

5. 验证可行性:评估选择的计量单位是否可以在实际操作中准确获取和计算。

6. 建立计量体系:将选定的计量单位整合成一个完整的计量体系,确保不同类型的数据资产都有适当的计量方法。

3.3 制定计量标准和方法

在选择了适当的计量单位后,下一步是制定详细的计量标准和方法。这个步骤的目的是确保对数据资产的计量能够准确、一致地进行。制定计量标准和方法的步骤如下:

1. 明确计量目的:了解进行数据资产计量的具体目的,如财务报告、内部管理、价值评估等。不同的目的可能需要不同的计量标准。

2. 定义计量指标:对每个选定的计量单位,制定明确的定义和计算公式。例如,如果使用"数据更新频率"作为计量指标,需要明确如何定义和计算这个频率。

3. 确定数据来源:识别计量所需的数据来源,确保这些数据是可获取的。可能需要设计数据采集流程或开发自动化工具。

4. 制定计量流程:设计详细的计量流程,包括数据收集、处理、计算和审核等步骤。流程应该明确各个环节的责任人和时间要求。

5. 建立计量标准:制定统一的计量标准,确保不同人员或不同时间进行的计量结果具有可比性。标准应该包括计量的频率、精度要求、异常值处理方法等。

6. 开发计量工具:根据制定的计量方法和标准,开发相应的计量工具或系统。这可能包括自动化的数据采集工具、计算模型和报告生成工具。

7. 进行试点计量:选择一部分典型的数据资产进行试点计量,验证计量方法的可行性和准确性。

8. 培训相关人员:对参与计量工作的人员进行培训,确保他们理解并能够正确执行计量标准和方法。

9. 建立质量控制机制:设置计量结果的审核和质量控制流程,确保计量结果的准确性和可靠性。

10. 制定更新机制:随着数据资产和业务环境的变化,计量标准和方法也需要定期审视和更新。建立定期review和更新的机制。

通过建立系统化的分类体系和科学的计量方法,企业可以更好地理解和管理其数据资产。这不仅为数据资产的入账提供了必要的基础,也为数据资产的价值评估、优化管理和战略决策提供了重要支持。

本文系转载,版权归原作者所有,

转载自公众号DATA数据社区 ,如若侵权请联系我们进行删除!  


《行业指标体系白皮书》下载地址:https://www.dtstack.com/resources/1057/?src=bbs

《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001/?src=bbs

《数栈V6.0产品白皮书》下载地址:https://www.dtstack.com/resources/1004/?src=bbs

想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=bbs

同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术群」,交流最新开源技术信息,群号码:30537511,项目地址:https://github.com/DTStack

0条评论
社区公告
  • 大数据领域最专业的产品&技术交流社区,专注于探讨与分享大数据领域有趣又火热的信息,专业又专注的数据人园地

最新活动更多
微信扫码获取数字化转型资料
钉钉扫码加入技术交流群