数据资产识别是整个入表流程的基础和起点。这个阶段的主要目标是全面了解企业拥有的数据资源,并确定哪些数据可以被视为资产。
首先,企业需要明确定义什么是数据资产。一般来说,数据资产是指企业拥有或控制的、能够产生经济价值的数据集合。这可能包括客户数据、交易记录、产品信息、市场调研数据等。在定义过程中,企业应考虑以下因素:
数据的经济价值:数据是否能直接或间接地为企业创造收益?例如,客户购买历史可以用于个性化营销,从而提高销售额。
数据的独特性:数据是否具有独特性或竞争优势?例如,专有的市场调研数据可能比公开可获取的数据更有价值。
数据的可重复使用性:数据是否可以在多个业务场景中重复使用?例如,客户画像数据可以用于产品开发、营销策略制定等多个方面。
数据的完整性和质量:数据是否完整、准确、及时?高质量的数据通常更有价值。
在定义过程中,企业可以组织跨部门讨论,邀请IT、业务、财务等相关部门的代表参与,以确保定义的全面性和可操作性。同时,也要考虑行业特性和企业自身的业务模式,制定符合企业实际情况的数据资产定义标准。
在明确了数据资产的定义后,下一步是制定具体的识别标准。这些标准将帮助企业在海量数据中筛选出真正具有资产价值的数据。识别标准可以包括以下几个方面:
数据规模:设定一个最小数据量的阈值,例如,只有超过100万条记录的数据集才被视为潜在的数据资产。
数据更新频率:根据数据的时效性要求设定更新频率标准,如每日更新的交易数据可能比每年更新一次的静态数据更有价值。
数据覆盖范围:评估数据的覆盖面,例如,覆盖全国市场的数据可能比仅覆盖单一地区的数据更有价值。
数据独特性:考虑数据的获取难度和替代性,独有的、难以复制的数据往往更有价值。
数据使用频率:评估数据在企业日常运营和决策中的使用频率,经常被使用的数据可能更有价值。
数据对业务的影响:考虑数据对关键业务流程和决策的影响程度,对核心业务有重大影响的数据可能更有价值。
在制定这些标准时,企业需要充分考虑自身的业务特点和战略目标。例如,一家电子商务公司可能更看重客户行为数据,而一家制造企业可能更注重生产过程数据。因此,识别标准应该是动态的,需要根据企业的发展和外部环境的变化进行定期调整。
有了明确的定义和识别标准后,下一步是对企业现有的数据资源进行全面盘点。这个过程可能会很耗时,但它是确保不遗漏任何潜在数据资产的关键步骤。以下是进行数据资产盘点的主要步骤:
组建盘点团队:成立一个跨部门的盘点团队,包括IT、业务、数据分析等相关部门的代表。这有助于全面了解企业各个部门的数据情况。
制定盘点计划:明确盘点的范围、时间表和责任人。可以按照业务部门或数据系统来划分盘点范围,确保覆盖所有可能的数据源。
收集数据信息:通过系统调查、部门访谈等方式收集数据信息。需要了解的信息包括数据的来源、格式、存储位置、更新频率、使用情况等。
初步筛选:根据之前制定的识别标准,对收集到的数据信息进行初步筛选,识别出潜在的数据资产。
详细评估:对初步筛选出的数据资产进行更详细的评估,包括数据质量、价值、风险等方面。
在盘点过程中,可能会遇到一些挑战,如数据分散在不同系统中、部分数据缺乏明确的管理者等。因此,盘点团队需要与各个部门密切合作,必要时可以使用数据发现工具来辅助识别潜在的数据资产。
盘点工作完成后,下一步是建立一个全面的数据资产清单。这个清单不仅是后续评估和入表工作的基础,也是企业进行数据资产管理的重要工具。一个完善的数据资产清单通常包括以下内容:
资产名称:给每个数据资产一个明确、易懂的名称。
资产描述:简要描述数据资产的内容、用途和特点。
数据类型:如结构化数据、非结构化数据、半结构化数据等。
数据来源:数据的产生或获取渠道。
存储位置:数据的物理或逻辑存储位置。
数据量:数据的规模,如记录数、文件大小等。
更新频率:数据的更新周期。
使用情况:数据的主要使用部门和用途。
负责人:数据资产的管理负责人。
安全等级:数据的敏感程度和安全要求。
质量评估:对数据质量的初步评估结果。
潜在价值:对数据潜在商业价值的初步判断。
A.客户主数据
属性 | 值 |
---|---|
数据集名称 | 客户主数据 |
数据所有者 | 销售部门 |
数据管理员 | 张三(CRM系统管理员) |
存储位置 | CRM系统数据库 |
数据量 | 约500,000条记录 |
更新频率 | 实时更新 |
数据敏感度 | 高 |
保留期限 | 客户关系终止后7年 |
主要用途 | 客户关系管理、销售分析、客户服务 |
数据质量评分 | 85/100 |
关键字段 | 客户ID、姓名、联系方式、地址、客户类型 |
合规要求 | 符合GDPR、《个人信息保护法》 |
访问控制级别 | 严格(仅授权人员可访问) |
数据价值评估 | 极高(对业务运营至关重要) |
B. 客户交易数据
属性 | 值 |
---|---|
数据集名称 | 客户交易数据 |
数据所有者 | 财务部门 |
数据管理员 | 李四(财务系统管理员) |
存储位置 | ERP系统数据库 |
数据量 | 约1,000万条记录/年 |
更新频率 | 每日批量更新 |
数据敏感度 | 高 |
保留期限 | 10年(法律要求) |
主要用途 | 财务分析、客户价值评估、销售预测 |
数据质量评分 | 92/100 |
关键字段 | 交易ID、客户ID、交易日期、产品ID、金额 |
合规要求 | 符合会计准则、税务法规 |
访问控制级别 | 中等(财务和高级管理层可访问) |
数据价值评估 | 高(对财务报告和决策分析至关重要) |
建立数据资产清单时,可以使用电子表格或专门的数据资产管理工具。重要的是要确保清单的可读性和可维护性,便于日后的更新和管理。同时,也要考虑清单的安全性,对于包含敏感信息的清单,需要制定相应的访问控制措施。
数据资产清单建立后,并不意味着工作的结束。企业需要建立定期更新机制,确保清单能够及时反映数据资产的变化。可以指定专人负责清单的维护,并建立一个便捷的更新流程,使各部门能够及时报告新增或变化的数据资产。
通过系统化的数据资产识别和清单管理,企业可以全面了解自身的数据资源,为后续的评估和入表工作奠定坚实的基础。同时,这个过程也有助于提高企业对数据资产的重视程度,推动数据治理和价值挖掘工作的开展。
本文系转载,版权归原作者所有,
转载自公众号 DATA数据社区 ,如若侵权请联系我们进行删除!
《行业指标体系白皮书》下载地址:https://www.dtstack.com/resources/1057/?src=bbs
《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001/?src=bbs
《数栈V6.0产品白皮书》下载地址:https://www.dtstack.com/resources/1004/?src=bbs
想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=bbs
同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术群」,交流最新开源技术信息,群号码:30537511,项目地址:https://github.com/DTStack